#include "avi_adpcm_decoder.h" #include "avi_ima_adpcm_decoder.h" #pragma pack(push, 1) typedef int16_t ms_adpcm_coefficients[2]; struct ms_adpcm_format { nsavi::audio_format format; uint16_t samples_per_block; uint16_t number_of_coefficients; ms_adpcm_coefficients coefficients[1]; }; #pragma pack(pop) int AVIDecoder::CreateAudioDecoder(const nsavi::AVIH *avi_header, const nsavi::STRH *stream_header, const nsavi::STRF *stream_format, const nsavi::STRD *stream_data, unsigned int preferred_bits, unsigned int max_channels, bool floating_point, ifc_aviaudiodecoder **decoder) { const nsavi::audio_format *format = (const nsavi::audio_format *)stream_format; if (format->format == nsavi::audio_format_ms_adpcm) { // TODO: verify waveformat sizes *decoder = new MS_ADPCM_AVIDecoder( (const ms_adpcm_format *)format, stream_header); return CREATEDECODER_SUCCESS; } else if (format->format == nsavi::audio_format_ima_adpcm) { // TODO: verify waveformat sizes *decoder = new IMA_ADPCM_AVIDecoder((const ima_adpcm_format *)format, stream_header); return CREATEDECODER_SUCCESS; } return CREATEDECODER_NOT_MINE; } #define CBCLASS AVIDecoder START_DISPATCH; CB(CREATE_AUDIO_DECODER, CreateAudioDecoder) END_DISPATCH; #undef CBCLASS int ms_adpcm_adaptationtable[] = { 230, 230, 230, 230, 307, 409, 512, 614, 768, 614, 512, 409, 307, 230, 230, 230 }; //int ms_adpcm_adaptcoeff1[] = { 256, 512, 0, 192, 240, 460, 392 } ; //int ms_adpcm_adaptcoeff2[] = { 0, -256, 0, 64, 0, -208, -232 } ; MS_ADPCM_AVIDecoder::MS_ADPCM_AVIDecoder(const ms_adpcm_format *adpcmformat, const nsavi::STRH *stream_header) : adpcmformat(adpcmformat), stream_header(stream_header) { } int MS_ADPCM_AVIDecoder::OutputFrameSize(size_t *frame_size) { int channels = adpcmformat->format.channels; *frame_size = ((adpcmformat->format.block_align - 7*channels)*2 + 2*channels) * 2; return AVI_SUCCESS; } int MS_ADPCM_AVIDecoder::GetOutputProperties(unsigned int *sampleRate, unsigned int *channels, unsigned int *bitsPerSample, bool *isFloat) { if (adpcmformat) { *sampleRate = adpcmformat->format.sample_rate; *channels = adpcmformat->format.channels; *bitsPerSample = 16; *isFloat = false; return AVI_SUCCESS; } else { return AVI_FAILURE; } } int MS_ADPCM_AVIDecoder::DecodeChunk(uint16_t type, void **inputBuffer, size_t *inputBufferBytes, void *outputBuffer, size_t *outputBufferBytes) { const ms_adpcm_coefficients *ms_adpcm_adaptcoeff = adpcmformat->coefficients; // TODO: use default coef values if they aren't present if (adpcmformat->format.channels == 1) { size_t adpcm_stream_length = *inputBufferBytes; if (adpcm_stream_length < adpcmformat->format.block_align) // i'm not even going to consider the possibility of adpcm frames split across avi chunks return AVI_FAILURE; adpcm_stream_length = adpcmformat->format.block_align; // do one block at a time, in_avi will call us again if (adpcm_stream_length < 7) return AVI_FAILURE; int16_t *out16 = (int16_t *)outputBuffer; size_t out16_length = *outputBufferBytes/2; const uint8_t *adpcm8 = (const uint8_t *)(*inputBuffer); uint8_t block_predictor = *adpcm8++; if (block_predictor > adpcmformat->number_of_coefficients) return AVI_FAILURE; int32_t coef1 = ms_adpcm_adaptcoeff[block_predictor][0]; int32_t coef2 = ms_adpcm_adaptcoeff[block_predictor][1]; const uint16_t *adpcm16 = (const uint16_t *)adpcm8; int16_t delta = *adpcm16++; int16_t sample1 = out16[1] = *adpcm16++; int16_t sample2 = out16[0] = *adpcm16++; int i=2; adpcm_stream_length-=7; adpcm8 = (const uint8_t *)adpcm16; while (adpcm_stream_length-- && out16_length) { int32_t predictor = ((int32_t)sample1 * coef1 + (int32_t)sample2 * coef2)>>8; uint32_t nibble = *adpcm8 >> 4; int32_t signed_nibble = ((int32_t)nibble << 28) >> 28; predictor += signed_nibble*delta; predictor = max(predictor, -32768); predictor = min(predictor, 32767); sample2=sample1; sample1=out16[i++]=predictor; out16_length--; delta = (ms_adpcm_adaptationtable[nibble]*delta)>>8; delta = max(delta, 16); predictor = ((int32_t)sample1 * coef1 + (int32_t)sample2 * coef2)>>8; nibble = *adpcm8++ & 0x0F; signed_nibble = ((int32_t)nibble << 28) >> 28; predictor += signed_nibble*delta; predictor = max(predictor, -32768); predictor = min(predictor, 32767); sample2=sample1; sample1=out16[i++]=predictor; out16_length--; delta = (ms_adpcm_adaptationtable[nibble]*delta)>>8; delta = max(delta, 16); } *inputBufferBytes -= adpcmformat->format.block_align; *inputBuffer = (void *)adpcm8; *outputBufferBytes = i*2; return AVI_SUCCESS; } else if (adpcmformat->format.channels == 2) { size_t adpcm_stream_length = *inputBufferBytes; if (adpcm_stream_length < adpcmformat->format.block_align) // i'm not even going to consider the possibility of adpcm frames split across avi chunks return AVI_FAILURE; adpcm_stream_length = adpcmformat->format.block_align; // do one block at a time, in_avi will call us again if (adpcm_stream_length < 14) return AVI_FAILURE; int16_t *out16 = (int16_t *)outputBuffer; size_t out16_length = *outputBufferBytes/2; const uint8_t *adpcm8 = (const uint8_t *)(*inputBuffer); uint8_t block_predictor_left = *adpcm8++; if (block_predictor_left > adpcmformat->number_of_coefficients) return AVI_FAILURE; uint8_t block_predictor_right = *adpcm8++; if (block_predictor_right > adpcmformat->number_of_coefficients) return AVI_FAILURE; int32_t coef1_left = ms_adpcm_adaptcoeff[block_predictor_left][0]; int32_t coef2_left = ms_adpcm_adaptcoeff[block_predictor_left][1]; int32_t coef1_right = ms_adpcm_adaptcoeff[block_predictor_right][0]; int32_t coef2_right = ms_adpcm_adaptcoeff[block_predictor_right][1]; const uint16_t *adpcm16 = (const uint16_t *)adpcm8; int16_t delta_left = *adpcm16++; int16_t delta_right = *adpcm16++; int16_t sample1_left = out16[2] = *adpcm16++; int16_t sample1_right = out16[3] = *adpcm16++; int16_t sample2_left = out16[0] = *adpcm16++; int16_t sample2_right = out16[1] = *adpcm16++; int i=4; adpcm_stream_length-=14; adpcm8 = (const uint8_t *)adpcm16; while (adpcm_stream_length-- && out16_length) { int32_t predictor = ((int32_t)sample1_left * coef1_left + (int32_t)sample2_left * coef2_left)>>8; uint32_t nibble = *adpcm8 >> 4; int32_t signed_nibble = ((int32_t)nibble << 28) >> 28; predictor += signed_nibble*delta_left; predictor = max(predictor, -32768); predictor = min(predictor, 32767); sample2_left=sample1_left; sample1_left=out16[i++]=predictor; out16_length--; delta_left = (ms_adpcm_adaptationtable[nibble]*delta_left)>>8; delta_left = max(delta_left, 16); predictor = ((int32_t)sample1_right * coef1_right + (int32_t)sample2_right * coef2_right)>>8; nibble = *adpcm8++ & 0x0F; signed_nibble = ((int32_t)nibble << 28) >> 28; predictor += signed_nibble*delta_right; predictor = max(predictor, -32768); predictor = min(predictor, 32767); sample2_right=sample1_right; sample1_right=out16[i++]=predictor; out16_length--; delta_right = (ms_adpcm_adaptationtable[nibble]*delta_right)>>8; delta_right = max(delta_right, 16); } *inputBufferBytes -= adpcmformat->format.block_align; *inputBuffer = (void *)adpcm8; *outputBufferBytes = i*2; return AVI_SUCCESS; } return AVI_FAILURE; } void MS_ADPCM_AVIDecoder::Close() { delete this; } #define CBCLASS MS_ADPCM_AVIDecoder START_DISPATCH; CB(OUTPUT_FRAME_SIZE, OutputFrameSize) CB(GET_OUTPUT_PROPERTIES, GetOutputProperties) CB(DECODE_CHUNK, DecodeChunk) VCB(CLOSE, Close) END_DISPATCH; #undef CBCLASS