/* * Reverb.cpp * ---------- * Purpose: Mixing code for reverb. * Notes : Ugh... This should really be removed at some point. * Authors: Olivier Lapicque * OpenMPT Devs * The OpenMPT source code is released under the BSD license. Read LICENSE for more details. */ #include "stdafx.h" #ifndef NO_REVERB #include "Reverb.h" #include "../soundlib/MixerLoops.h" #include "mpt/base/numbers.hpp" #if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2) #include #endif #endif // NO_REVERB OPENMPT_NAMESPACE_BEGIN #ifndef NO_REVERB #if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2) // Load two 32-bit values static MPT_FORCEINLINE __m128i Load64SSE(const int32 *x) { return _mm_loadl_epi64(reinterpret_cast(x)); } // Load four 16-bit values static MPT_FORCEINLINE __m128i Load64SSE(const LR16 (&x)[2]) { return _mm_loadl_epi64(&reinterpret_cast(x)); } // Store two 32-bit or four 16-bit values from register static MPT_FORCEINLINE void Store64SSE(int32 *dst, __m128i src) { return _mm_storel_epi64(reinterpret_cast<__m128i *>(dst), src); } static MPT_FORCEINLINE void Store64SSE(LR16 (&dst)[2], __m128i src) { return _mm_storel_epi64(&reinterpret_cast<__m128i &>(dst), src); } #endif CReverb::CReverb() { // Reverb mix buffers MemsetZero(g_RefDelay); MemsetZero(g_LateReverb); } static int32 OnePoleLowPassCoef(int32 scale, float g, float F_c, float F_s) { if(g > 0.999999f) return 0; g *= g; double scale_over_1mg = scale / (1.0 - g); double cosw = std::cos((2.0 * mpt::numbers::pi) * F_c / F_s); return mpt::saturate_round((1.0 - (std::sqrt((g + g) * (1.0 - cosw) - g * g * (1.0 - cosw * cosw)) + g * cosw)) * scale_over_1mg); } static float mBToLinear(int32 value_mB) { if(!value_mB) return 1; if(value_mB <= -100000) return 0; const double val = value_mB * 3.321928094887362304 / (100.0 * 20.0); // log2(10)/(100*20) return static_cast(std::pow(2.0, val - static_cast(0.5 + val))); } static int32 mBToLinear(int32 scale, int32 value_mB) { return mpt::saturate_round(mBToLinear(value_mB) * scale); } static constexpr std::pair ReverbPresets[NUM_REVERBTYPES] = { // Examples simulating General MIDI 2'musical' reverb presets // Name (Decay time) Description // Plate (1.3s) A plate reverb simulation. {{ -1000, -200, 1.30f,0.90f, 0,0.002f, 0,0.010f,100.0f, 75.0f }, "GM Plate"}, // Small Room (1.1s) A small size room with a length of 5m or so. {{ -1000, -600, 1.10f,0.83f, -400,0.005f, 500,0.010f,100.0f,100.0f }, "GM Small Room"}, // Medium Room (1.3s) A medium size room with a length of 10m or so. {{ -1000, -600, 1.30f,0.83f, -1000,0.010f, -200,0.020f,100.0f,100.0f }, "GM Medium Room"}, // Large Room (1.5s) A large size room suitable for live performances. {{ -1000, -600, 1.50f,0.83f, -1600,0.020f, -1000,0.040f,100.0f,100.0f }, "GM Large Room"}, // Medium Hall (1.8s) A medium size concert hall. {{ -1000, -600, 1.80f,0.70f, -1300,0.015f, -800,0.030f,100.0f,100.0f }, "GM Medium Hall"}, // Large Hall (1.8s) A large size concert hall suitable for a full orchestra. {{ -1000, -600, 1.80f,0.70f, -2000,0.030f, -1400,0.060f,100.0f,100.0f }, "GM Large Hall"}, {{ -1000, -100, 1.49f,0.83f, -2602,0.007f, 200,0.011f,100.0f,100.0f }, "Generic"}, {{ -1000,-6000, 0.17f,0.10f, -1204,0.001f, 207,0.002f,100.0f,100.0f }, "Padded Cell"}, {{ -1000, -454, 0.40f,0.83f, -1646,0.002f, 53,0.003f,100.0f,100.0f }, "Room"}, {{ -1000,-1200, 1.49f,0.54f, -370,0.007f, 1030,0.011f,100.0f, 60.0f }, "Bathroom"}, {{ -1000,-6000, 0.50f,0.10f, -1376,0.003f, -1104,0.004f,100.0f,100.0f }, "Living Room"}, {{ -1000, -300, 2.31f,0.64f, -711,0.012f, 83,0.017f,100.0f,100.0f }, "Stone Room"}, {{ -1000, -476, 4.32f,0.59f, -789,0.020f, -289,0.030f,100.0f,100.0f }, "Auditorium"}, {{ -1000, -500, 3.92f,0.70f, -1230,0.020f, -2,0.029f,100.0f,100.0f }, "Concert Hall"}, {{ -1000, 0, 2.91f,1.30f, -602,0.015f, -302,0.022f,100.0f,100.0f }, "Cave"}, {{ -1000, -698, 7.24f,0.33f, -1166,0.020f, 16,0.030f,100.0f,100.0f }, "Arena"}, {{ -1000,-1000,10.05f,0.23f, -602,0.020f, 198,0.030f,100.0f,100.0f }, "Hangar"}, {{ -1000,-4000, 0.30f,0.10f, -1831,0.002f, -1630,0.030f,100.0f,100.0f }, "Carpeted Hallway"}, {{ -1000, -300, 1.49f,0.59f, -1219,0.007f, 441,0.011f,100.0f,100.0f }, "Hallway"}, {{ -1000, -237, 2.70f,0.79f, -1214,0.013f, 395,0.020f,100.0f,100.0f }, "Stone Corridor"}, {{ -1000, -270, 1.49f,0.86f, -1204,0.007f, -4,0.011f,100.0f,100.0f }, "Alley"}, {{ -1000,-3300, 1.49f,0.54f, -2560,0.162f, -613,0.088f, 79.0f,100.0f }, "Forest"}, {{ -1000, -800, 1.49f,0.67f, -2273,0.007f, -2217,0.011f, 50.0f,100.0f }, "City"}, {{ -1000,-2500, 1.49f,0.21f, -2780,0.300f, -2014,0.100f, 27.0f,100.0f }, "Mountains"}, {{ -1000,-1000, 1.49f,0.83f,-10000,0.061f, 500,0.025f,100.0f,100.0f }, "Quarry"}, {{ -1000,-2000, 1.49f,0.50f, -2466,0.179f, -2514,0.100f, 21.0f,100.0f }, "Plain"}, {{ -1000, 0, 1.65f,1.50f, -1363,0.008f, -1153,0.012f,100.0f,100.0f }, "Parking Lot"}, {{ -1000,-1000, 2.81f,0.14f, 429,0.014f, 648,0.021f, 80.0f, 60.0f }, "Sewer Pipe"}, {{ -1000,-4000, 1.49f,0.10f, -449,0.007f, 1700,0.011f,100.0f,100.0f }, "Underwater"}, }; mpt::ustring GetReverbPresetName(uint32 preset) { return (preset < NUM_REVERBTYPES) ? mpt::ToUnicode(mpt::Charset::ASCII, ReverbPresets[preset].second) : mpt::ustring{}; } const SNDMIX_REVERB_PROPERTIES *GetReverbPreset(uint32 preset) { return (preset < NUM_REVERBTYPES) ? &ReverbPresets[preset].first : nullptr; } ////////////////////////////////////////////////////////////////////////// // // I3DL2 environmental reverb support // struct REFLECTIONPRESET { int32 lDelayFactor; int16 sGainLL, sGainRR, sGainLR, sGainRL; }; const REFLECTIONPRESET gReflectionsPreset[ENVIRONMENT_NUMREFLECTIONS] = { // %Delay, ll, rr, lr, rl {0, 9830, 6554, 0, 0}, {10, 6554, 13107, 0, 0}, {24, -9830, 13107, 0, 0}, {36, 13107, -6554, 0, 0}, {54, 16384, 16384, -1638, -1638}, {61, -13107, 8192, -328, -328}, {73, -11468, -11468, -3277, 3277}, {87, 13107, -9830, 4916, -4916} }; //////////////////////////////////////////////////////////////////////////////////// // // Implementation // MPT_FORCEINLINE int32 ftol(float f) { return static_cast(f); } static void I3dl2_to_Generic( const SNDMIX_REVERB_PROPERTIES *pReverb, EnvironmentReverb *pRvb, float flOutputFreq, int32 lMinRefDelay, int32 lMaxRefDelay, int32 lMinRvbDelay, int32 lMaxRvbDelay, int32 lTankLength) { float flDelayFactor, flDelayFactorHF, flDecayTimeHF; int32 lDensity, lTailDiffusion; // Common parameters pRvb->ReverbLevel = pReverb->lReverb; pRvb->ReflectionsLevel = pReverb->lReflections; pRvb->RoomHF = pReverb->lRoomHF; // HACK: Somewhat normalize the reverb output level int32 lMaxLevel = (pRvb->ReverbLevel > pRvb->ReflectionsLevel) ? pRvb->ReverbLevel : pRvb->ReflectionsLevel; if (lMaxLevel < -600) { lMaxLevel += 600; pRvb->ReverbLevel -= lMaxLevel; pRvb->ReflectionsLevel -= lMaxLevel; } // Pre-Diffusion factor (for both reflections and late reverb) lDensity = 8192 + ftol(79.31f * pReverb->flDensity); pRvb->PreDiffusion = lDensity; // Late reverb diffusion lTailDiffusion = ftol((0.15f + pReverb->flDiffusion * (0.36f*0.01f)) * 32767.0f); if (lTailDiffusion > 0x7f00) lTailDiffusion = 0x7f00; pRvb->TankDiffusion = lTailDiffusion; // Verify reflections and reverb delay parameters float flRefDelay = pReverb->flReflectionsDelay; if (flRefDelay > 0.100f) flRefDelay = 0.100f; int32 lReverbDelay = ftol(pReverb->flReverbDelay * flOutputFreq); int32 lReflectionsDelay = ftol(flRefDelay * flOutputFreq); int32 lReverbDecayTime = ftol(pReverb->flDecayTime * flOutputFreq); if (lReflectionsDelay < lMinRefDelay) { lReverbDelay -= (lMinRefDelay - lReflectionsDelay); lReflectionsDelay = lMinRefDelay; } if (lReflectionsDelay > lMaxRefDelay) { lReverbDelay += (lReflectionsDelay - lMaxRefDelay); lReflectionsDelay = lMaxRefDelay; } // Adjust decay time when adjusting reverb delay if (lReverbDelay < lMinRvbDelay) { lReverbDecayTime -= (lMinRvbDelay - lReverbDelay); lReverbDelay = lMinRvbDelay; } if (lReverbDelay > lMaxRvbDelay) { lReverbDecayTime += (lReverbDelay - lMaxRvbDelay); lReverbDelay = lMaxRvbDelay; } pRvb->ReverbDelay = lReverbDelay; pRvb->ReverbDecaySamples = lReverbDecayTime; // Setup individual reflections delay and gains for (uint32 iRef=0; iRefReflections[iRef]; ref.Delay = lReflectionsDelay + (gReflectionsPreset[iRef].lDelayFactor * lReverbDelay + 50)/100; ref.GainLL = gReflectionsPreset[iRef].sGainLL; ref.GainRL = gReflectionsPreset[iRef].sGainRL; ref.GainLR = gReflectionsPreset[iRef].sGainLR; ref.GainRR = gReflectionsPreset[iRef].sGainRR; } // Late reverb decay time if (lTankLength < 10) lTankLength = 10; flDelayFactor = (lReverbDecayTime <= lTankLength) ? 1.0f : ((float)lTankLength / (float)lReverbDecayTime); pRvb->ReverbDecay = ftol(std::pow(0.001f, flDelayFactor) * 32768.0f); // Late Reverb Decay HF flDecayTimeHF = (float)lReverbDecayTime * pReverb->flDecayHFRatio; flDelayFactorHF = (flDecayTimeHF <= (float)lTankLength) ? 1.0f : ((float)lTankLength / flDecayTimeHF); pRvb->flReverbDamping = std::pow(0.001f, flDelayFactorHF); } void CReverb::Shutdown(MixSampleInt &gnRvbROfsVol, MixSampleInt &gnRvbLOfsVol) { gnReverbSend = false; gnRvbLOfsVol = 0; gnRvbROfsVol = 0; // Clear out all reverb state g_bLastInPresent = false; g_bLastOutPresent = false; g_nLastRvbIn_xl = g_nLastRvbIn_xr = 0; g_nLastRvbIn_yl = g_nLastRvbIn_yr = 0; g_nLastRvbOut_xl = g_nLastRvbOut_xr = 0; MemsetZero(gnDCRRvb_X1); MemsetZero(gnDCRRvb_Y1); // Zero internal buffers MemsetZero(g_LateReverb.Diffusion1); MemsetZero(g_LateReverb.Diffusion2); MemsetZero(g_LateReverb.Delay1); MemsetZero(g_LateReverb.Delay2); MemsetZero(g_RefDelay.RefDelayBuffer); MemsetZero(g_RefDelay.PreDifBuffer); MemsetZero(g_RefDelay.RefOut); } void CReverb::Initialize(bool bReset, MixSampleInt &gnRvbROfsVol, MixSampleInt &gnRvbLOfsVol, uint32 MixingFreq) { if (m_Settings.m_nReverbType >= NUM_REVERBTYPES) m_Settings.m_nReverbType = 0; const SNDMIX_REVERB_PROPERTIES *rvbPreset = &ReverbPresets[m_Settings.m_nReverbType].first; if ((rvbPreset != m_currentPreset) || (bReset)) { // Reverb output frequency is half of the dry output rate float flOutputFrequency = (float)MixingFreq; EnvironmentReverb rvb; // Reset reverb parameters m_currentPreset = rvbPreset; I3dl2_to_Generic(rvbPreset, &rvb, flOutputFrequency, RVBMINREFDELAY, RVBMAXREFDELAY, RVBMINRVBDELAY, RVBMAXRVBDELAY, ( RVBDIF1L_LEN + RVBDIF1R_LEN + RVBDIF2L_LEN + RVBDIF2R_LEN + RVBDLY1L_LEN + RVBDLY1R_LEN + RVBDLY2L_LEN + RVBDLY2R_LEN) / 2); // Store reverb decay time (in samples) for reverb auto-shutdown gnReverbDecaySamples = rvb.ReverbDecaySamples; // Room attenuation at high frequencies int32 nRoomLP; nRoomLP = OnePoleLowPassCoef(32768, mBToLinear(rvb.RoomHF), 5000, flOutputFrequency); g_RefDelay.nCoeffs.c.l = (int16)nRoomLP; g_RefDelay.nCoeffs.c.r = (int16)nRoomLP; // Pre-Diffusion factor (for both reflections and late reverb) g_RefDelay.nPreDifCoeffs.c.l = (int16)(rvb.PreDiffusion*2); g_RefDelay.nPreDifCoeffs.c.r = (int16)(rvb.PreDiffusion*2); // Setup individual reflections delay and gains for (uint32 iRef=0; iRef<8; iRef++) { SWRvbReflection &ref = g_RefDelay.Reflections[iRef]; ref.DelayDest = rvb.Reflections[iRef].Delay; ref.Delay = ref.DelayDest; ref.Gains[0].c.l = rvb.Reflections[iRef].GainLL; ref.Gains[0].c.r = rvb.Reflections[iRef].GainRL; ref.Gains[1].c.l = rvb.Reflections[iRef].GainLR; ref.Gains[1].c.r = rvb.Reflections[iRef].GainRR; } g_LateReverb.nReverbDelay = rvb.ReverbDelay; // Reflections Master Gain uint32 lReflectionsGain = 0; if (rvb.ReflectionsLevel > -9000) { lReflectionsGain = mBToLinear(32768, rvb.ReflectionsLevel); } g_RefDelay.lMasterGain = lReflectionsGain; // Late reverb master gain uint32 lReverbGain = 0; if (rvb.ReverbLevel > -9000) { lReverbGain = mBToLinear(32768, rvb.ReverbLevel); } g_LateReverb.lMasterGain = lReverbGain; // Late reverb diffusion uint32 nTailDiffusion = rvb.TankDiffusion; if (nTailDiffusion > 0x7f00) nTailDiffusion = 0x7f00; g_LateReverb.nDifCoeffs[0].c.l = (int16)nTailDiffusion; g_LateReverb.nDifCoeffs[0].c.r = (int16)nTailDiffusion; g_LateReverb.nDifCoeffs[1].c.l = (int16)nTailDiffusion; g_LateReverb.nDifCoeffs[1].c.r = (int16)nTailDiffusion; g_LateReverb.Dif2InGains[0].c.l = 0x7000; g_LateReverb.Dif2InGains[0].c.r = 0x1000; g_LateReverb.Dif2InGains[1].c.l = 0x1000; g_LateReverb.Dif2InGains[1].c.r = 0x7000; // Late reverb decay time int32 nReverbDecay = rvb.ReverbDecay; Limit(nReverbDecay, 0, 0x7ff0); g_LateReverb.nDecayDC[0].c.l = (int16)nReverbDecay; g_LateReverb.nDecayDC[0].c.r = 0; g_LateReverb.nDecayDC[1].c.l = 0; g_LateReverb.nDecayDC[1].c.r = (int16)nReverbDecay; // Late Reverb Decay HF float fReverbDamping = rvb.flReverbDamping * rvb.flReverbDamping; int32 nDampingLowPass; nDampingLowPass = OnePoleLowPassCoef(32768, fReverbDamping, 5000, flOutputFrequency); Limit(nDampingLowPass, 0x100, 0x7f00); g_LateReverb.nDecayLP[0].c.l = (int16)nDampingLowPass; g_LateReverb.nDecayLP[0].c.r = 0; g_LateReverb.nDecayLP[1].c.l = 0; g_LateReverb.nDecayLP[1].c.r = (int16)nDampingLowPass; } if (bReset) { gnReverbSamples = 0; Shutdown(gnRvbROfsVol, gnRvbLOfsVol); } // Wait at least 5 seconds before shutting down the reverb if (gnReverbDecaySamples < MixingFreq*5) { gnReverbDecaySamples = MixingFreq*5; } } void CReverb::TouchReverbSendBuffer(MixSampleInt *MixReverbBuffer, MixSampleInt &gnRvbROfsVol, MixSampleInt &gnRvbLOfsVol, uint32 nSamples) { if(!gnReverbSend) { // and we did not clear the buffer yet, do it now because we will get new data StereoFill(MixReverbBuffer, nSamples, gnRvbROfsVol, gnRvbLOfsVol); } gnReverbSend = true; // we will have to process reverb } // Reverb void CReverb::Process(MixSampleInt *MixSoundBuffer, MixSampleInt *MixReverbBuffer, MixSampleInt &gnRvbROfsVol, MixSampleInt &gnRvbLOfsVol, uint32 nSamples) { if((!gnReverbSend) && (!gnReverbSamples)) { // no data is sent to reverb and reverb decayed completely return; } if(!gnReverbSend) { // no input data in MixReverbBuffer, so the buffer got not cleared in TouchReverbSendBuffer(), do it now for decay StereoFill(MixReverbBuffer, nSamples, gnRvbROfsVol, gnRvbLOfsVol); } uint32 nIn, nOut; // Dynamically adjust reverb master gains int32 lMasterGain; lMasterGain = ((g_RefDelay.lMasterGain * m_Settings.m_nReverbDepth) >> 4); if (lMasterGain > 0x7fff) lMasterGain = 0x7fff; g_RefDelay.ReflectionsGain.c.l = (int16)lMasterGain; g_RefDelay.ReflectionsGain.c.r = (int16)lMasterGain; lMasterGain = ((g_LateReverb.lMasterGain * m_Settings.m_nReverbDepth) >> 4); if (lMasterGain > 0x10000) lMasterGain = 0x10000; g_LateReverb.RvbOutGains[0].c.l = (int16)((lMasterGain+0x7f) >> 3); // l->l g_LateReverb.RvbOutGains[0].c.r = (int16)((lMasterGain+0xff) >> 4); // r->l g_LateReverb.RvbOutGains[1].c.l = (int16)((lMasterGain+0xff) >> 4); // l->r g_LateReverb.RvbOutGains[1].c.r = (int16)((lMasterGain+0x7f) >> 3); // r->r // Process Dry/Wet Mix int32 lMaxRvbGain = (g_RefDelay.lMasterGain > g_LateReverb.lMasterGain) ? g_RefDelay.lMasterGain : g_LateReverb.lMasterGain; if (lMaxRvbGain > 32768) lMaxRvbGain = 32768; int32 lDryVol = (36 - m_Settings.m_nReverbDepth)>>1; if (lDryVol < 8) lDryVol = 8; if (lDryVol > 16) lDryVol = 16; lDryVol = 16 - (((16-lDryVol) * lMaxRvbGain) >> 15); ReverbDryMix(MixSoundBuffer, MixReverbBuffer, lDryVol, nSamples); // Downsample 2x + 1st stage of lowpass filter nIn = ReverbProcessPreFiltering1x(MixReverbBuffer, nSamples); nOut = nIn; // Main reverb processing: split into small chunks (needed for short reverb delays) // Reverb Input + Low-Pass stage #2 + Pre-diffusion if (nIn > 0) ProcessPreDelay(&g_RefDelay, MixReverbBuffer, nIn); // Process Reverb Reflections and Late Reverberation int32 *pRvbOut = MixReverbBuffer; uint32 nRvbSamples = nOut; while (nRvbSamples > 0) { uint32 nPosRef = g_RefDelay.nRefOutPos & SNDMIX_REVERB_DELAY_MASK; uint32 nPosRvb = (nPosRef - g_LateReverb.nReverbDelay) & SNDMIX_REVERB_DELAY_MASK; uint32 nmax1 = (SNDMIX_REVERB_DELAY_MASK+1) - nPosRef; uint32 nmax2 = (SNDMIX_REVERB_DELAY_MASK+1) - nPosRvb; nmax1 = (nmax1 < nmax2) ? nmax1 : nmax2; uint32 n = nRvbSamples; if (n > nmax1) n = nmax1; if (n > 64) n = 64; // Reflections output + late reverb delay ProcessReflections(&g_RefDelay, &g_RefDelay.RefOut[nPosRef], pRvbOut, n); // Late Reverberation ProcessLateReverb(&g_LateReverb, &g_RefDelay.RefOut[nPosRvb], pRvbOut, n); // Update delay positions g_RefDelay.nRefOutPos = (g_RefDelay.nRefOutPos + n) & SNDMIX_REVERB_DELAY_MASK; g_RefDelay.nDelayPos = (g_RefDelay.nDelayPos + n) & SNDMIX_REFLECTIONS_DELAY_MASK; pRvbOut += n*2; nRvbSamples -= n; } // Adjust nDelayPos, in case nIn != nOut g_RefDelay.nDelayPos = (g_RefDelay.nDelayPos - nOut + nIn) & SNDMIX_REFLECTIONS_DELAY_MASK; // Upsample 2x ReverbProcessPostFiltering1x(MixReverbBuffer, MixSoundBuffer, nSamples); // Automatically shut down if needed if(gnReverbSend) gnReverbSamples = gnReverbDecaySamples; // reset decay counter else if(gnReverbSamples > nSamples) gnReverbSamples -= nSamples; // decay else // decayed { Shutdown(gnRvbROfsVol, gnRvbLOfsVol); gnReverbSamples = 0; } gnReverbSend = false; // no input data in MixReverbBuffer } void CReverb::ReverbDryMix(int32 * MPT_RESTRICT pDry, int32 * MPT_RESTRICT pWet, int lDryVol, uint32 nSamples) { for (uint32 i=0; i>4) * lDryVol; pDry[i*2+1] += (pWet[i*2+1]>>4) * lDryVol; } } uint32 CReverb::ReverbProcessPreFiltering2x(int32 * MPT_RESTRICT pWet, uint32 nSamples) { uint32 nOutSamples = 0; int lowpass = g_RefDelay.nCoeffs.c.l; int y1_l = g_nLastRvbIn_yl, y1_r = g_nLastRvbIn_yr; uint32 n = nSamples; if (g_bLastInPresent) { int x1_l = g_nLastRvbIn_xl, x1_r = g_nLastRvbIn_xr; int x2_l = pWet[0], x2_r = pWet[1]; x1_l = (x1_l+x2_l)>>13; x1_r = (x1_r+x2_r)>>13; y1_l = x1_l + (((x1_l - y1_l)*lowpass)>>15); y1_r = x1_r + (((x1_r - y1_r)*lowpass)>>15); pWet[0] = y1_l; pWet[1] = y1_r; pWet+=2; n--; nOutSamples = 1; g_bLastInPresent = false; } if (n & 1) { n--; g_nLastRvbIn_xl = pWet[n*2]; g_nLastRvbIn_xr = pWet[n*2+1]; g_bLastInPresent = true; } n >>= 1; for (uint32 i=0; i>13; int x1_r = pWet[i*4+1]; int x2_r = pWet[i*4+3]; x1_r = (x1_r+x2_r)>>13; y1_l = x1_l + (((x1_l - y1_l)*lowpass)>>15); y1_r = x1_r + (((x1_r - y1_r)*lowpass)>>15); pWet[i*2] = y1_l; pWet[i*2+1] = y1_r; } g_nLastRvbIn_yl = y1_l; g_nLastRvbIn_yr = y1_r; return nOutSamples + n; } uint32 CReverb::ReverbProcessPreFiltering1x(int32 * MPT_RESTRICT pWet, uint32 nSamples) { int lowpass = g_RefDelay.nCoeffs.c.l; int y1_l = g_nLastRvbIn_yl, y1_r = g_nLastRvbIn_yr; for (uint32 i=0; i> 12; int x_r = pWet[i*2+1] >> 12; y1_l = x_l + (((x_l - y1_l)*lowpass)>>15); y1_r = x_r + (((x_r - y1_r)*lowpass)>>15); pWet[i*2] = y1_l; pWet[i*2+1] = y1_r; } g_nLastRvbIn_yl = y1_l; g_nLastRvbIn_yr = y1_r; return nSamples; } void CReverb::ReverbProcessPostFiltering2x(const int32 * MPT_RESTRICT pRvb, int32 * MPT_RESTRICT pDry, uint32 nSamples) { uint32 n0 = nSamples, n; int x1_l = g_nLastRvbOut_xl, x1_r = g_nLastRvbOut_xr; if (g_bLastOutPresent) { pDry[0] += x1_l; pDry[1] += x1_r; pDry += 2; n0--; g_bLastOutPresent = false; } n = n0 >> 1; for (uint32 i=0; i>1; pDry[i*4+1] += (x_r + x1_r)>>1; pDry[i*4+2] += x_l; pDry[i*4+3] += x_r; x1_l = x_l; x1_r = x_r; } if (n0 & 1) { int x_l = pRvb[n*2], x_r = pRvb[n*2+1]; pDry[n*4] += (x_l + x1_l)>>1; pDry[n*4+1] += (x_r + x1_r)>>1; x1_l = x_l; x1_r = x_r; g_bLastOutPresent = true; } g_nLastRvbOut_xl = x1_l; g_nLastRvbOut_xr = x1_r; } #define DCR_AMOUNT 9 // Stereo Add + DC removal void CReverb::ReverbProcessPostFiltering1x(const int32 * MPT_RESTRICT pRvb, int32 * MPT_RESTRICT pDry, uint32 nSamples) { #if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2) if(CPU::HasFeatureSet(CPU::feature::sse2)) { __m128i nDCRRvb_Y1 = Load64SSE(gnDCRRvb_Y1); __m128i nDCRRvb_X1 = Load64SSE(gnDCRRvb_X1); __m128i in = _mm_set1_epi32(0); while(nSamples--) { in = Load64SSE(pRvb); pRvb += 2; // x(n-1) - x(n) __m128i diff = _mm_sub_epi32(nDCRRvb_X1, in); nDCRRvb_X1 = _mm_add_epi32(nDCRRvb_Y1, _mm_sub_epi32(_mm_srai_epi32(diff, DCR_AMOUNT + 1), diff)); __m128i out = _mm_add_epi32(Load64SSE(pDry), nDCRRvb_X1); nDCRRvb_Y1 = _mm_sub_epi32(nDCRRvb_X1, _mm_srai_epi32(nDCRRvb_X1, DCR_AMOUNT)); nDCRRvb_X1 = in; Store64SSE(pDry, out); pDry += 2; } Store64SSE(gnDCRRvb_X1, in); Store64SSE(gnDCRRvb_Y1, nDCRRvb_Y1); return; } #endif int32 X1L = gnDCRRvb_X1[0], X1R = gnDCRRvb_X1[1]; int32 Y1L = gnDCRRvb_Y1[0], Y1R = gnDCRRvb_Y1[1]; int32 inL = 0, inR = 0; while(nSamples--) { inL = pRvb[0]; inR = pRvb[1]; pRvb += 2; int32 outL = pDry[0], outR = pDry[1]; // x(n-1) - x(n) X1L -= inL; X1R -= inR; X1L = X1L / (1 << (DCR_AMOUNT + 1)) - X1L; X1R = X1R / (1 << (DCR_AMOUNT + 1)) - X1R; Y1L += X1L; Y1R += X1R; // add to dry mix outL += Y1L; outR += Y1R; Y1L -= Y1L / (1 << DCR_AMOUNT); Y1R -= Y1R / (1 << DCR_AMOUNT); X1L = inL; X1R = inR; pDry[0] = outL; pDry[1] = outR; pDry += 2; } gnDCRRvb_Y1[0] = Y1L; gnDCRRvb_Y1[1] = Y1R; gnDCRRvb_X1[0] = inL; gnDCRRvb_X1[1] = inR; } void CReverb::ReverbDCRemoval(int32 * MPT_RESTRICT pBuffer, uint32 nSamples) { #if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2) if(CPU::HasFeatureSet(CPU::feature::sse2)) { __m128i nDCRRvb_Y1 = Load64SSE(gnDCRRvb_Y1); __m128i nDCRRvb_X1 = Load64SSE(gnDCRRvb_X1); while(nSamples--) { __m128i in = Load64SSE(pBuffer); __m128i diff = _mm_sub_epi32(nDCRRvb_X1, in); __m128i out = _mm_add_epi32(nDCRRvb_Y1, _mm_sub_epi32(_mm_srai_epi32(diff, DCR_AMOUNT + 1), diff)); Store64SSE(pBuffer, out); pBuffer += 2; nDCRRvb_Y1 = _mm_sub_epi32(out, _mm_srai_epi32(out, DCR_AMOUNT)); nDCRRvb_X1 = in; } Store64SSE(gnDCRRvb_X1, nDCRRvb_X1); Store64SSE(gnDCRRvb_Y1, nDCRRvb_Y1); return; } #endif int32 X1L = gnDCRRvb_X1[0], X1R = gnDCRRvb_X1[1]; int32 Y1L = gnDCRRvb_Y1[0], Y1R = gnDCRRvb_Y1[1]; int32 inL = 0, inR = 0; while(nSamples--) { inL = pBuffer[0]; inR = pBuffer[1]; // x(n-1) - x(n) X1L -= inL; X1R -= inR; X1L = X1L / (1 << (DCR_AMOUNT + 1)) - X1L; X1R = X1R / (1 << (DCR_AMOUNT + 1)) - X1R; Y1L += X1L; Y1R += X1R; pBuffer[0] = Y1L; pBuffer[1] = Y1R; pBuffer += 2; Y1L -= Y1L / (1 << DCR_AMOUNT); Y1R -= Y1R / (1 << DCR_AMOUNT); X1L = inL; X1R = inR; } gnDCRRvb_Y1[0] = Y1L; gnDCRRvb_Y1[1] = Y1R; gnDCRRvb_X1[0] = inL; gnDCRRvb_X1[1] = inR; } ////////////////////////////////////////////////////////////////////////// // // Pre-Delay: // // 1. Saturate and low-pass the reverb input (stage 2 of roomHF) // 2. Process pre-diffusion // 3. Insert the result in the reflections delay buffer // // Save some typing static MPT_FORCEINLINE int32 Clamp16(int32 x) { return Clamp(x, std::numeric_limits::min(), std::numeric_limits::max()); } void CReverb::ProcessPreDelay(SWRvbRefDelay * MPT_RESTRICT pPreDelay, const int32 * MPT_RESTRICT pIn, uint32 nSamples) { uint32 preDifPos = pPreDelay->nPreDifPos; uint32 delayPos = pPreDelay->nDelayPos - 1; #if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2) if(CPU::HasFeatureSet(CPU::feature::sse2)) { __m128i coeffs = _mm_cvtsi32_si128(pPreDelay->nCoeffs.lr); __m128i history = _mm_cvtsi32_si128(pPreDelay->History.lr); __m128i preDifCoeffs = _mm_cvtsi32_si128(pPreDelay->nPreDifCoeffs.lr); while(nSamples--) { __m128i in32 = Load64SSE(pIn); // 16-bit unsaturated reverb input [ r | l ] __m128i inSat = _mm_packs_epi32(in32, in32); // [ r | l | r | l ] (16-bit saturated) pIn += 2; // Low-pass __m128i lp = _mm_mulhi_epi16(_mm_subs_epi16(history, inSat), coeffs); __m128i preDif = _mm_cvtsi32_si128(pPreDelay->PreDifBuffer[preDifPos].lr); history = _mm_adds_epi16(_mm_adds_epi16(lp, lp), inSat); // Pre-Diffusion preDifPos = (preDifPos + 1) & SNDMIX_PREDIFFUSION_DELAY_MASK; delayPos = (delayPos + 1) & SNDMIX_REFLECTIONS_DELAY_MASK; __m128i preDif2 = _mm_subs_epi16(history, _mm_mulhi_epi16(preDif, preDifCoeffs)); pPreDelay->PreDifBuffer[preDifPos].lr = _mm_cvtsi128_si32(preDif2); pPreDelay->RefDelayBuffer[delayPos].lr = _mm_cvtsi128_si32(_mm_adds_epi16(_mm_mulhi_epi16(preDifCoeffs, preDif2), preDif)); } pPreDelay->nPreDifPos = preDifPos; pPreDelay->History.lr = _mm_cvtsi128_si32(history); return; } #endif const int32 coeffsL = pPreDelay->nCoeffs.c.l, coeffsR = pPreDelay->nCoeffs.c.r; const int32 preDifCoeffsL = pPreDelay->nPreDifCoeffs.c.l, preDifCoeffsR = pPreDelay->nPreDifCoeffs.c.r; int16 historyL = pPreDelay->History.c.l, historyR = pPreDelay->History.c.r; while(nSamples--) { int32 inL = Clamp16(pIn[0]); int32 inR = Clamp16(pIn[1]); pIn += 2; // Low-pass int32 lpL = (Clamp16(historyL - inL) * coeffsL) / 65536; int32 lpR = (Clamp16(historyR - inR) * coeffsR) / 65536; historyL = mpt::saturate_cast(Clamp16(lpL + lpL) + inL); historyR = mpt::saturate_cast(Clamp16(lpR + lpR) + inR); // Pre-Diffusion int32 preDifL = pPreDelay->PreDifBuffer[preDifPos].c.l; int32 preDifR = pPreDelay->PreDifBuffer[preDifPos].c.r; preDifPos = (preDifPos + 1) & SNDMIX_PREDIFFUSION_DELAY_MASK; delayPos = (delayPos + 1) & SNDMIX_REFLECTIONS_DELAY_MASK; int16 preDif2L = mpt::saturate_cast(historyL - preDifL * preDifCoeffsL / 65536); int16 preDif2R = mpt::saturate_cast(historyR - preDifR * preDifCoeffsR / 65536); pPreDelay->PreDifBuffer[preDifPos].c.l = preDif2L; pPreDelay->PreDifBuffer[preDifPos].c.r = preDif2R; pPreDelay->RefDelayBuffer[delayPos].c.l = mpt::saturate_cast(preDifCoeffsL * preDif2L / 65536 + preDifL); pPreDelay->RefDelayBuffer[delayPos].c.r = mpt::saturate_cast(preDifCoeffsR * preDif2R / 65536 + preDifR); } pPreDelay->nPreDifPos = preDifPos; pPreDelay->History.c.l = historyL; pPreDelay->History.c.r = historyR; } //////////////////////////////////////////////////////////////////// // // ProcessReflections: // First stage: // - process 4 reflections, output to pRefOut // - output results to pRefOut // Second stage: // - process another 3 reflections // - sum with pRefOut // - apply reflections master gain and accumulate in the given output // void CReverb::ProcessReflections(SWRvbRefDelay * MPT_RESTRICT pPreDelay, LR16 * MPT_RESTRICT pRefOut, int32 * MPT_RESTRICT pOut, uint32 nSamples) { #if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2) if(CPU::HasFeatureSet(CPU::feature::sse2)) { union { __m128i xmm; int16 i[8]; } pos; const LR16 *refDelayBuffer = pPreDelay->RefDelayBuffer; #define GETDELAY(x) static_cast(pPreDelay->Reflections[x].Delay) __m128i delayPos = _mm_set_epi16(GETDELAY(7), GETDELAY(6), GETDELAY(5), GETDELAY(4), GETDELAY(3), GETDELAY(2), GETDELAY(1), GETDELAY(0)); #undef GETDELAY delayPos = _mm_sub_epi16(_mm_set1_epi16(static_cast(pPreDelay->nDelayPos - 1)), delayPos); __m128i gain12 = _mm_unpacklo_epi64(Load64SSE(pPreDelay->Reflections[0].Gains), Load64SSE(pPreDelay->Reflections[1].Gains)); __m128i gain34 = _mm_unpacklo_epi64(Load64SSE(pPreDelay->Reflections[2].Gains), Load64SSE(pPreDelay->Reflections[3].Gains)); __m128i gain56 = _mm_unpacklo_epi64(Load64SSE(pPreDelay->Reflections[4].Gains), Load64SSE(pPreDelay->Reflections[5].Gains)); __m128i gain78 = _mm_unpacklo_epi64(Load64SSE(pPreDelay->Reflections[6].Gains), Load64SSE(pPreDelay->Reflections[7].Gains)); // For 28-bit final output: 16+15-3 = 28 __m128i refGain = _mm_srai_epi32(_mm_set_epi32(0, 0, pPreDelay->ReflectionsGain.c.r, pPreDelay->ReflectionsGain.c.l), 3); __m128i delayInc = _mm_set1_epi16(1), delayMask = _mm_set1_epi16(SNDMIX_REFLECTIONS_DELAY_MASK); while(nSamples--) { delayPos = _mm_and_si128(_mm_add_epi16(delayInc, delayPos), delayMask); _mm_storeu_si128(&pos.xmm, delayPos); __m128i ref12 = _mm_set_epi32(refDelayBuffer[pos.i[1]].lr, refDelayBuffer[pos.i[1]].lr, refDelayBuffer[pos.i[0]].lr, refDelayBuffer[pos.i[0]].lr); __m128i ref34 = _mm_set_epi32(refDelayBuffer[pos.i[3]].lr, refDelayBuffer[pos.i[3]].lr, refDelayBuffer[pos.i[2]].lr, refDelayBuffer[pos.i[2]].lr); __m128i ref56 = _mm_set_epi32(refDelayBuffer[pos.i[5]].lr, refDelayBuffer[pos.i[5]].lr, refDelayBuffer[pos.i[4]].lr, refDelayBuffer[pos.i[4]].lr); __m128i ref78 = _mm_set_epi32(0, 0, refDelayBuffer[pos.i[6]].lr, refDelayBuffer[pos.i[6]].lr); // First stage __m128i refOut1 = _mm_add_epi32(_mm_madd_epi16(ref12, gain12), _mm_madd_epi16(ref34, gain34)); refOut1 = _mm_srai_epi32(_mm_add_epi32(refOut1, _mm_shuffle_epi32(refOut1, _MM_SHUFFLE(1, 0, 3, 2))), 15); // Second stage __m128i refOut2 = _mm_add_epi32(_mm_madd_epi16(ref56, gain56), _mm_madd_epi16(ref78, gain78)); refOut2 = _mm_srai_epi32(_mm_add_epi32(refOut2, _mm_shuffle_epi32(refOut2, _MM_SHUFFLE(1, 0, 3, 2))), 15); // Saturate to 16-bit and sum stages __m128i refOut = _mm_adds_epi16(_mm_packs_epi32(refOut1, refOut1), _mm_packs_epi32(refOut2, refOut2)); pRefOut->lr = _mm_cvtsi128_si32(refOut); pRefOut++; __m128i out = _mm_madd_epi16(_mm_unpacklo_epi16(refOut, refOut), refGain); // Apply reflections gain // At this, point, this is the only output of the reverb Store64SSE(pOut, out); pOut += 2; } return; } #endif int pos[7]; for(int i = 0; i < 7; i++) pos[i] = pPreDelay->nDelayPos - pPreDelay->Reflections[i].Delay - 1; // For 28-bit final output: 16+15-3 = 28 int16 refGain = pPreDelay->ReflectionsGain.c.l / (1 << 3); while(nSamples--) { // First stage int32 refOutL = 0, refOutR = 0; for(int i = 0; i < 4; i++) { pos[i] = (pos[i] + 1) & SNDMIX_REFLECTIONS_DELAY_MASK; int16 refL = pPreDelay->RefDelayBuffer[pos[i]].c.l, refR = pPreDelay->RefDelayBuffer[pos[i]].c.r; refOutL += refL * pPreDelay->Reflections[i].Gains[0].c.l + refR * pPreDelay->Reflections[i].Gains[0].c.r; refOutR += refL * pPreDelay->Reflections[i].Gains[1].c.l + refR * pPreDelay->Reflections[i].Gains[1].c.r; } int16 stage1l = mpt::saturate_cast(refOutL / (1 << 15)); int16 stage1r = mpt::saturate_cast(refOutR / (1 << 15)); // Second stage refOutL = 0; refOutR = 0; for(int i = 4; i < 7; i++) { pos[i] = (pos[i] + 1) & SNDMIX_REFLECTIONS_DELAY_MASK; int16 refL = pPreDelay->RefDelayBuffer[pos[i]].c.l, refR = pPreDelay->RefDelayBuffer[pos[i]].c.r; refOutL += refL * pPreDelay->Reflections[i].Gains[0].c.l + refR * pPreDelay->Reflections[i].Gains[0].c.r; refOutR += refL * pPreDelay->Reflections[i].Gains[1].c.l + refR * pPreDelay->Reflections[i].Gains[1].c.r; } pOut[0] = (pRefOut->c.l = mpt::saturate_cast(stage1l + refOutL / (1 << 15))) * refGain; pOut[1] = (pRefOut->c.r = mpt::saturate_cast(stage1r + refOutR / (1 << 15))) * refGain; pRefOut++; pOut += 2; } } ////////////////////////////////////////////////////////////////////////// // // Late reverberation (with SW reflections) // void CReverb::ProcessLateReverb(SWLateReverb * MPT_RESTRICT pReverb, LR16 * MPT_RESTRICT pRefOut, int32 * MPT_RESTRICT pMixOut, uint32 nSamples) { // Calculate delay line offset from current delay position #define DELAY_OFFSET(x) ((delayPos - (x)) & RVBDLY_MASK) #if defined(MPT_ENABLE_ARCH_INTRINSICS_SSE2) if(CPU::HasFeatureSet(CPU::feature::sse2)) { int delayPos = pReverb->nDelayPos & RVBDLY_MASK; __m128i rvbOutGains = Load64SSE(pReverb->RvbOutGains); __m128i difCoeffs = Load64SSE(pReverb->nDifCoeffs); __m128i decayLP = Load64SSE(pReverb->nDecayLP); __m128i lpHistory = Load64SSE(pReverb->LPHistory); while(nSamples--) { __m128i refIn = _mm_cvtsi32_si128(pRefOut->lr); // 16-bit stereo input pRefOut++; __m128i delay2 = _mm_unpacklo_epi32( _mm_cvtsi32_si128(pReverb->Delay2[DELAY_OFFSET(RVBDLY2L_LEN)].lr), _mm_cvtsi32_si128(pReverb->Delay2[DELAY_OFFSET(RVBDLY2R_LEN)].lr)); // Unsigned to avoid sign extension uint16 diff1L = pReverb->Diffusion1[DELAY_OFFSET(RVBDIF1L_LEN)].c.l; uint16 diff1R = pReverb->Diffusion1[DELAY_OFFSET(RVBDIF1R_LEN)].c.r; int32 diffusion1 = diff1L | (diff1R << 16); // diffusion1 history uint16 diff2L = pReverb->Diffusion2[DELAY_OFFSET(RVBDIF2L_LEN)].c.l; uint16 diff2R = pReverb->Diffusion2[DELAY_OFFSET(RVBDIF2R_LEN)].c.r; int32 diffusion2 = diff2L | (diff2R << 16); // diffusion2 history __m128i lpDecay = _mm_mulhi_epi16(_mm_subs_epi16(lpHistory, delay2), decayLP); lpHistory = _mm_adds_epi16(_mm_adds_epi16(lpDecay, lpDecay), delay2); // Low-passed decay // Apply decay gain __m128i histDecay = _mm_srai_epi32(_mm_madd_epi16(Load64SSE(pReverb->nDecayDC), lpHistory), 15); __m128i histDecayPacked = _mm_shuffle_epi32(_mm_packs_epi32(histDecay, histDecay), _MM_SHUFFLE(2, 0, 2, 0)); __m128i histDecayIn = _mm_adds_epi16(_mm_shuffle_epi32(_mm_packs_epi32(histDecay, histDecay), _MM_SHUFFLE(2, 0, 2, 0)), _mm_srai_epi16(_mm_unpacklo_epi32(refIn, refIn), 2)); __m128i histDecayInDiff = _mm_subs_epi16(histDecayIn, _mm_mulhi_epi16(_mm_cvtsi32_si128(diffusion1), difCoeffs)); pReverb->Diffusion1[delayPos].lr = _mm_cvtsi128_si32(histDecayInDiff); __m128i delay1Out = _mm_adds_epi16(_mm_mulhi_epi16(difCoeffs, histDecayInDiff), _mm_cvtsi32_si128(diffusion1)); // Insert the diffusion output in the reverb delay line pReverb->Delay1[delayPos].lr = _mm_cvtsi128_si32(delay1Out); __m128i histDecayInDelay = _mm_adds_epi16(histDecayIn, _mm_unpacklo_epi32(delay1Out, delay1Out)); // Input to second diffuser __m128i delay1 = _mm_unpacklo_epi32( _mm_cvtsi32_si128(pReverb->Delay1[DELAY_OFFSET(RVBDLY1L_LEN)].lr), _mm_cvtsi32_si128(pReverb->Delay1[DELAY_OFFSET(RVBDLY1R_LEN)].lr)); __m128i delay1Gains = _mm_srai_epi32(_mm_madd_epi16(delay1, Load64SSE(pReverb->Dif2InGains)), 15); __m128i delay1GainsSat = _mm_shuffle_epi32(_mm_packs_epi32(delay1Gains, delay1Gains), _MM_SHUFFLE(2, 0, 2, 0)); __m128i histDelay1 = _mm_subs_epi16(_mm_adds_epi16(histDecayInDelay, delay1), delay1GainsSat); // accumulate with reverb output __m128i diff2out = _mm_subs_epi16(delay1GainsSat, _mm_mulhi_epi16(_mm_cvtsi32_si128(diffusion2), difCoeffs)); __m128i diff2outCoeffs = _mm_mulhi_epi16(difCoeffs, diff2out); pReverb->Diffusion2[delayPos].lr = _mm_cvtsi128_si32(diff2out); __m128i mixOut = Load64SSE(pMixOut); __m128i delay2out = _mm_adds_epi16(diff2outCoeffs, _mm_cvtsi32_si128(diffusion2)); pReverb->Delay2[delayPos].lr = _mm_cvtsi128_si32(delay2out); delayPos = (delayPos + 1) & RVBDLY_MASK; // Accumulate with reverb output __m128i out = _mm_add_epi32(_mm_madd_epi16(_mm_adds_epi16(histDelay1, delay2out), rvbOutGains), mixOut); Store64SSE(pMixOut, out); pMixOut += 2; } Store64SSE(pReverb->LPHistory, lpHistory); pReverb->nDelayPos = delayPos; return; } #endif int delayPos = pReverb->nDelayPos & RVBDLY_MASK; while(nSamples--) { int16 refInL = pRefOut->c.l, refInR = pRefOut->c.r; pRefOut++; int32 delay2LL = pReverb->Delay2[DELAY_OFFSET(RVBDLY2L_LEN)].c.l, delay2LR = pReverb->Delay2[DELAY_OFFSET(RVBDLY2L_LEN)].c.r; int32 delay2RL = pReverb->Delay2[DELAY_OFFSET(RVBDLY2R_LEN)].c.l, delay2RR = pReverb->Delay2[DELAY_OFFSET(RVBDLY2R_LEN)].c.r; int32 diff1L = pReverb->Diffusion1[DELAY_OFFSET(RVBDIF1L_LEN)].c.l; int32 diff1R = pReverb->Diffusion1[DELAY_OFFSET(RVBDIF1R_LEN)].c.r; int32 diff2L = pReverb->Diffusion2[DELAY_OFFSET(RVBDIF2L_LEN)].c.l; int32 diff2R = pReverb->Diffusion2[DELAY_OFFSET(RVBDIF2R_LEN)].c.r; int32 lpDecayLL = Clamp16(pReverb->LPHistory[0].c.l - delay2LL) * pReverb->nDecayLP[0].c.l / 65536; int32 lpDecayLR = Clamp16(pReverb->LPHistory[0].c.r - delay2LR) * pReverb->nDecayLP[0].c.r / 65536; int32 lpDecayRL = Clamp16(pReverb->LPHistory[1].c.l - delay2RL) * pReverb->nDecayLP[1].c.l / 65536; int32 lpDecayRR = Clamp16(pReverb->LPHistory[1].c.r - delay2RR) * pReverb->nDecayLP[1].c.r / 65536; // Low-passed decay pReverb->LPHistory[0].c.l = mpt::saturate_cast(Clamp16(lpDecayLL + lpDecayLL) + delay2LL); pReverb->LPHistory[0].c.r = mpt::saturate_cast(Clamp16(lpDecayLR + lpDecayLR) + delay2LR); pReverb->LPHistory[1].c.l = mpt::saturate_cast(Clamp16(lpDecayRL + lpDecayRL) + delay2RL); pReverb->LPHistory[1].c.r = mpt::saturate_cast(Clamp16(lpDecayRR + lpDecayRR) + delay2RR); // Apply decay gain int32 histDecayL = Clamp16((int32)pReverb->nDecayDC[0].c.l * pReverb->LPHistory[0].c.l / (1 << 15)); int32 histDecayR = Clamp16((int32)pReverb->nDecayDC[1].c.r * pReverb->LPHistory[1].c.r / (1 << 15)); int32 histDecayInL = Clamp16(histDecayL + refInL / 4); int32 histDecayInR = Clamp16(histDecayR + refInR / 4); int32 histDecayInDiffL = Clamp16(histDecayInL - diff1L * pReverb->nDifCoeffs[0].c.l / 65536); int32 histDecayInDiffR = Clamp16(histDecayInR - diff1R * pReverb->nDifCoeffs[0].c.r / 65536); pReverb->Diffusion1[delayPos].c.l = static_cast(histDecayInDiffL); pReverb->Diffusion1[delayPos].c.r = static_cast(histDecayInDiffR); int32 delay1L = Clamp16(pReverb->nDifCoeffs[0].c.l * histDecayInDiffL / 65536 + diff1L); int32 delay1R = Clamp16(pReverb->nDifCoeffs[0].c.r * histDecayInDiffR / 65536 + diff1R); // Insert the diffusion output in the reverb delay line pReverb->Delay1[delayPos].c.l = static_cast(delay1L); pReverb->Delay1[delayPos].c.r = static_cast(delay1R); int32 histDecayInDelayL = Clamp16(histDecayInL + delay1L); int32 histDecayInDelayR = Clamp16(histDecayInR + delay1R); // Input to second diffuser int32 delay1LL = pReverb->Delay1[DELAY_OFFSET(RVBDLY1L_LEN)].c.l, delay1LR = pReverb->Delay1[DELAY_OFFSET(RVBDLY1L_LEN)].c.r; int32 delay1RL = pReverb->Delay1[DELAY_OFFSET(RVBDLY1R_LEN)].c.l, delay1RR = pReverb->Delay1[DELAY_OFFSET(RVBDLY1R_LEN)].c.r; int32 delay1GainsL = Clamp16((delay1LL * pReverb->Dif2InGains[0].c.l + delay1LR * pReverb->Dif2InGains[0].c.r) / (1 << 15)); int32 delay1GainsR = Clamp16((delay1RL * pReverb->Dif2InGains[1].c.l + delay1RR * pReverb->Dif2InGains[1].c.r) / (1 << 15)); // accumulate with reverb output int32 histDelay1LL = Clamp16(Clamp16(histDecayInDelayL + delay1LL) - delay1GainsL); int32 histDelay1LR = Clamp16(Clamp16(histDecayInDelayR + delay1LR) - delay1GainsR); int32 histDelay1RL = Clamp16(Clamp16(histDecayInDelayL + delay1RL) - delay1GainsL); int32 histDelay1RR = Clamp16(Clamp16(histDecayInDelayR + delay1RR) - delay1GainsR); int32 diff2outL = Clamp16(delay1GainsL - diff2L * pReverb->nDifCoeffs[0].c.l / 65536); int32 diff2outR = Clamp16(delay1GainsR - diff2R * pReverb->nDifCoeffs[0].c.r / 65536); int32 diff2outCoeffsL = pReverb->nDifCoeffs[0].c.l * diff2outL / 65536; int32 diff2outCoeffsR = pReverb->nDifCoeffs[0].c.r * diff2outR / 65536; pReverb->Diffusion2[delayPos].c.l = static_cast(diff2outL); pReverb->Diffusion2[delayPos].c.r = static_cast(diff2outR); int32 delay2outL = Clamp16(diff2outCoeffsL + diff2L); int32 delay2outR = Clamp16(diff2outCoeffsR + diff2R); pReverb->Delay2[delayPos].c.l = static_cast(delay2outL); pReverb->Delay2[delayPos].c.r = static_cast(delay2outR); delayPos = (delayPos + 1) & RVBDLY_MASK; // Accumulate with reverb output pMixOut[0] += Clamp16(histDelay1LL + delay2outL) * pReverb->RvbOutGains[0].c.l + Clamp16(histDelay1LR + delay2outR) * pReverb->RvbOutGains[0].c.r; pMixOut[1] += Clamp16(histDelay1RL + Clamp16(diff2outCoeffsL)) * pReverb->RvbOutGains[1].c.l + Clamp16(histDelay1RR + Clamp16(diff2outCoeffsR)) * pReverb->RvbOutGains[1].c.r; pMixOut += 2; } pReverb->nDelayPos = delayPos; #undef DELAY_OFFSET } #else MPT_MSVC_WORKAROUND_LNK4221(Reverb) #endif // NO_REVERB OPENMPT_NAMESPACE_END