200 lines
5.4 KiB
Python
200 lines
5.4 KiB
Python
class Matrix:
|
|
def __init__(self, m):
|
|
self.matrix = [[0 for i in range(len(m[0]))] for j in range(len(m))]
|
|
for i, row in enumerate(m):
|
|
for j, col in enumerate(row):
|
|
self.matrix[i][j] = m[i][j]
|
|
|
|
self.I = []
|
|
self.R = []
|
|
self.Q = []
|
|
|
|
def __str__(self):
|
|
textArr = ""
|
|
for row in self.matrix:
|
|
for col in row:
|
|
if type(col) == int:
|
|
textArr += " " + str(col) + " "
|
|
else:
|
|
textArr += str(col) + " "
|
|
textArr += "\n"
|
|
return textArr
|
|
|
|
def __len__(self):
|
|
return len(self.matrix)
|
|
|
|
def __getitem__(self, i):
|
|
return self.matrix[i]
|
|
|
|
def __radd__(self, other):
|
|
return self.__add__(other)
|
|
|
|
def __rsub__(self, other):
|
|
return self.__sub__(other)
|
|
|
|
def __rmul__(self, other):
|
|
return self.__mul__(other)
|
|
|
|
def __add__(self, other):
|
|
result = [[0 for i in range(len(other.matrix[0]))] for j in range(len(other.matrix[0]))]
|
|
if isinstance(other, self.__class__):
|
|
for i in range(len(self.matrix)):
|
|
for j in range(len(other.matrix[0])):
|
|
result[i][j] = other.matrix[i][j] + other.matrix[i][j]
|
|
elif isinstance(other, int):
|
|
return "TODO: Matrix Add Function w/ Int"
|
|
return result
|
|
|
|
def __sub__(self, other):
|
|
if isinstance(other, self.__class__):
|
|
if len(self.matrix) < len(other.matrix):
|
|
short = self
|
|
else:
|
|
short = other
|
|
result = [[0 for i in range(len(short.matrix[0]))] for j in range(len(short.matrix[0]))]
|
|
for i in range(len(short.matrix)):
|
|
for j in range(len(short.matrix[0])):
|
|
result[i][j] = self.matrix[i][j] - other.matrix[i][j]
|
|
elif isinstance(other, int):
|
|
return "TODO: Matrix Sub Function w/ Int"
|
|
return result
|
|
|
|
def __mul__(self, other):
|
|
A = self
|
|
B = other
|
|
result = [[sum(a * b for a, b in zip(A_row, B_col))
|
|
for B_col in zip(*B)]
|
|
for A_row in A]
|
|
return result
|
|
|
|
def getI(self):
|
|
return self.I
|
|
|
|
def getR(self):
|
|
return self.R
|
|
|
|
def getQ(self):
|
|
return self.Q
|
|
|
|
def makeRegAndSTD(self):
|
|
m = self.matrix
|
|
shift = 0
|
|
# Point Terminal states to themselves and move to top of 2d array
|
|
for i, row in enumerate(m):
|
|
void = True
|
|
for col in row:
|
|
if col != 0:
|
|
void = False
|
|
if void == True:
|
|
row[i] = 1
|
|
m.insert(shift, row)
|
|
m.pop(i+1)
|
|
shift += 1
|
|
|
|
# Shift all elements relative to the nmber of terminal states found
|
|
for i, row in enumerate(m):
|
|
m[i] = m[i][-shift:] + m[i][:-shift]
|
|
|
|
# Extract sections of the matrix for use in calculating F
|
|
top = m[:shift]
|
|
bottom = m[shift:]
|
|
I = [[0 for i in range(len(m))] for j in range(shift)]
|
|
R = [[0 for i in range(len(m))] for j in range(len(m)-shift)]
|
|
Q = [[0 for i in range(len(m))] for j in range(len(m)-shift)]
|
|
|
|
for i, col in enumerate(top):
|
|
I[i] = col[:shift]
|
|
|
|
for i, col in enumerate(bottom):
|
|
R[i] = col[:shift]
|
|
Q[i] = col[shift:]
|
|
|
|
self.I = Matrix(I)
|
|
self.R = Matrix(R)
|
|
self.Q = Matrix(Q)
|
|
|
|
|
|
def transposeMatrix(m):
|
|
return map(list,zip(*m))
|
|
|
|
def getMatrixMinor(m,i,j):
|
|
return [row[:j] + row[j+1:] for row in (m[:i]+m[i+1:])]
|
|
|
|
def getMatrixDeternminant(m):
|
|
#base case for 2x2 matrix
|
|
if len(m) == 2:
|
|
return m[0][0]*m[1][1]-m[0][1]*m[1][0]
|
|
|
|
determinant = 0
|
|
for c in range(len(m)):
|
|
determinant += ((-1)**c)*m[0][c]*getMatrixDeternminant(getMatrixMinor(m,0,c))
|
|
return determinant
|
|
|
|
def getMatrixInverse(m):
|
|
determinant = getMatrixDeternminant(m)
|
|
#special case for 2x2 matrix:
|
|
if len(m) == 2:
|
|
return [[m[1][1]/determinant, -1*m[0][1]/determinant],
|
|
[-1*m[1][0]/determinant, m[0][0]/determinant]]
|
|
|
|
#find matrix of cofactors
|
|
cofactors = []
|
|
for r in range(len(m)):
|
|
cofactorRow = []
|
|
for c in range(len(m)):
|
|
minor = getMatrixMinor(m,r,c)
|
|
cofactorRow.append(((-1)**(r+c)) * getMatrixDeternminant(minor))
|
|
cofactors.append(cofactorRow)
|
|
cofactors = transposeMatrix(cofactors)
|
|
for r in range(len(cofactors)):
|
|
for c in range(len(cofactors)):
|
|
cofactors[r][c] = cofactors[r][c]/determinant
|
|
return cofactors
|
|
|
|
def print2D(array):
|
|
for arr in array:
|
|
print arr
|
|
return ""
|
|
|
|
# ---------------------------------------------------------
|
|
|
|
m1 = Matrix([
|
|
[1,0],
|
|
[0,1]])
|
|
m2 = Matrix([
|
|
[.8, .1],
|
|
[.4, .4]])
|
|
m3 = Matrix([
|
|
[12, 7, 3],
|
|
[4, 5, 6],
|
|
[7, 8, 9]])
|
|
m4 = Matrix([
|
|
[5, 8, 1, 2],
|
|
[6, 7, 3, 0],
|
|
[4, 5, 9, 1]
|
|
,[2, 3, 7,3]])
|
|
m5 = Matrix([
|
|
[0, 1, 0, 0, 0, 1],
|
|
[4, 0, 0, 3, 2, 0],
|
|
[0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0]])
|
|
m6 = Matrix([
|
|
[.1,0,.8,.1],
|
|
[.1,.1,.4,.4],
|
|
[0,0,0,0],
|
|
[0,0,0,0],])
|
|
|
|
# ----------------------------------------------------------
|
|
|
|
print "Subtract"
|
|
print2D(m3 - m4)
|
|
print ""
|
|
print2D(m4 - m3)
|
|
|
|
# print "Subtract Whole Number"
|
|
# print2D(1 - m3)
|
|
|
|
|